5G integrated Fiber-Wireless networks exploiting existing photonic technologies for high-density SDN programmable network architectures

Deliverable D9.2
Website development and creation of social accounts

Programme: H2020-ICT-2016-2
Project number: 761989
Project acronym: 5G-PHOS
Start/End date: 01/09/2017 – 31/08/2020

Deliverable type: Report
Deliverable reference number: 761989/ D9.2/ Final | V.1
Deliverable title: Documentation Standards
WP contributing to the deliverable: WP9
Responsible Editor: IQU
Due date: 31/10/2017
Actual submission date: 30/11/2017

Dissemination level: Public
Revision: FINAL
Author List:

<table>
<thead>
<tr>
<th>Organization</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>IQU</td>
<td>John Vardakas, Elli Kartsakli, Melani Gurdiel</td>
</tr>
<tr>
<td>AUTH</td>
<td>George Kalfas, Sotirios Papaioannou, Nikos Pleros</td>
</tr>
</tbody>
</table>

Abstract: This document contains the description of the project’s website, which was launched in October 2017 and can be found at http://www.5g-phos.eu/. In addition, the CONNECT project has established social media pages that will act as complementary dissemination and outreach tools.

Keywords: website, social media accounts, dissemination.
Disclaimer: The information, documentation and figures available in this deliverable are written by the 5G-PHOS Consortium partners under EC co-financing (project H2020-ICT-761989) and do not necessarily reflect the view of the European Commission. The information in this document is provided "as is", and no guarantee or warranty is given that the information is fit for any particular purpose. The reader uses the information at his/her sole risk and liability.
Table of Contents

TABLE OF CONTENTS .. 5
EXECUTIVE SUMMARY .. 6
1. INTRODUCTION .. 7
 1.1 PURPOSE OF THIS DOCUMENT .. 7
 1.2 DOCUMENT STRUCTURE .. 7
 1.3 AUDIENCE .. 7
2. PROJECT WEBSITE ... 8
3. SOCIAL MEDIA ACCOUNTS ... 20
Executive Summary

The website of the 5G-PHOS project has been designed, developed and launched in October 2017, and it can be found at http://www.5g-phos.eu.

The key features of the website are:

1. the Home page, which shows an overview of the project, as well as links to the social media pages of 5G-PHOS
2. the About page, which provides information regarding the objectives and the work packages of the project
3. the Consortium page, which presents the 5G-PHOS partners
4. the News and Events pages, which present the latest news of the project and events that are related to the project,
5. the private area for document exchange between the partners, and,
6. the Contact page which provides the contact information

Finally, this document presents information regarding the established social media pages of the 5G-PHOS project.
1. Introduction

1.1 Purpose of this document

The objective of this deliverable is to present the 5G-PHOS website and social media accounts. The project’s website design and its functional requirements were defined after a number of meetings between the PO and AUTH’s IT department. The main requirements of the website were:

1. An attractive, user-friendly and professional design
2. Easy access to the key project information that is related to the project objectives and work packages
3. A comprehensive presentation of the project consortium, by using links to each partner’s webpage
4. Links to the project’s social media pages
5. A detailed “contact” page
6. Ability to update the website’s content

The 5G-PHOS project has also established accounts in popular social media services, such as Twitter, LinkedIn and Facebook.

1.2 Document structure

The present deliverable is split into two major chapters:

- Project website
- Project social media accounts

1.3 Audience

This document is publically available.
2. Project website

The design of 5G-PHOS’ website gives a modern feel and ease of access for its various pages. The key features include:

- The entire content of the website is accessible from every page
- Links to the social media pages are provided
- News and events pages to keep users up to date with the latest project developments
- A “communication kit” in order to present useful information regarding the CONNECT project
- Project information, such as project objectives and work packages
- Project consortium
- Contact information

The website content includes:

A header (same for each page, always visible)

Homepage (Figure 1)

The “About” page (Figure 2)

The “Consortium” page (Figure 3)

The “Documents” page that includes:

- The “Factsheet” page (Figure 4)
- The “Press Releases” page (Figure 5)
- The “Project Overview” page (Figure 6)

The “News & Events” page (Figure 7)

The “Private Area” main page (Figure 8)

The “Private Area - administration” page (Figure 9)

The “Private Area – deliverables” page (Figure 10)

The “Contact Us” page (Figure 11)
5G-PHOS is an H2020 5GPPP Phase II project focusing on 5G integrated Fiber-Wireless networks that leverage existing photonic technologies towards implementing a high density SDN-programmable network architecture. The project has a duration of 3 years, from 01/09/2017 until 31/08/2020, and is supported by a consortium of 16 partners and coordinated by Aristotle University of Thessaloniki. 5G-PHOS aims to investigate and exploit integrated optical technologies towards enhancing 5G-FW convergence and realizing cost-effective and energy-efficient 5G network solutions for high density use cases. 5G-PHOS is the first coordinated attempt that will draw from existing scientific results in the area of photonics in order to address 5G network for dense, ultra-dense and Hot-Spot areas incorporating Photonic Integrated Circuits (PICs) in optical microwave signal generation. 5G-PHOS system is be based on the combination of WDM and optical add-drop multiplexing (ROADM) and optical beamforming functionalities. 5G-PHOS expects to release a seamless, interoperable, RAT-agnostic and SDN-programmable 5G network that supports 64x14 MIMO antennas in the V-band.

Figure 1. 5G-PHOS' website: the homepage
5G-PHOS delivery of enhanced smartphone applications to emerging 5G mobile networks, delivering a powerful set of new capabilities for mobile operators and end-users. 5G-PHOS is a multi-technology project that leverages a combination of network virtualization, software-defined networking (SDN), and network function virtualization (NFV) to enable a flexible and scalable 5G network infrastructure.

Concept & Objectives

5G-PHOS has been conceived upon the need to address the technological and regulatory framework for the development of 5G mobile networks, delivering a flexible and scalable network infrastructure, enabling a new generation of 5G mobile networks.

- **Objectives:**
 - Deliver cost-effective and scalable network solutions.
 - Enable new services and applications.
 - Enhance network performance and efficiency.
 - Foster collaboration among stakeholders.

Objectives:

- Deliver cost-effective and scalable network solutions.
- Enable new services and applications.
- Enhance network performance and efficiency.
- Foster collaboration among stakeholders.

Examples:

- **5G-Air:** Full-duplex wireless communication.
- **5G-Wave:** Wireless backhaul.
- **5G-Cloud:** Cloud computing for 5G applications.

Concept & Vision:

5G-PHOS aims to deliver a flexible and scalable 5G network infrastructure, enabling new services and applications. The project will leverage SDN and NFV technologies to create a dynamic and adaptable network architecture.

2. **5G-Air:** full-duplex wireless communication

3. **5G-Wave:** wireless backhaul

4. **5G-Cloud:** cloud computing for 5G applications

Conclusion:

5G-PHOS is an innovative project that aims to deliver a flexible and scalable 5G network infrastructure, enabling new services and applications. The project will leverage SDN and NFV technologies to create a dynamic and adaptable network architecture. The success of 5G-PHOS will depend on the collaboration among stakeholders and the adoption of new technologies such as full-duplex wireless communication, wireless backhaul, and cloud computing for 5G applications.
Regarding the administration AUTH served as the 5G-PHOS project coordinator, whereas regarding technical coordinators AUTH is responsible for the implementation of the medium-transparent resource allocation protocol and for the cooperative radios/optical beamforming algorithms.

ORANGE brings its expertise in the design of the radio and mobile core/edge architecture for 5G networks. It will also contribute to the experimental activities by providing its testbed facilities. Whereas also contributes to the dissemination, standardization, exploitation and communication activities of the project.

Mellanox will provide its network processor from the NIC-family of processors, supporting the consortium in its programming with the latest algorithms. Mellanox will be mainly responsible for the assembly of the centralized unit prototypes, contributing also to the assembly of the antenna module prototypes.

III-V Lab is in charge of the design, fabrication and assembly of 25 mm passive, modulators, and 5 Gb/s photodiodes. In order to deliver the above in a high-quality production scale. III-V Lab will perform destructive and non-destructive testing and use an automated testing tool.

Fraunhofer IZM is responsible for the design and fabrication of the antenna ATTA modules and their assembly onto the MIMO POE. Fraunhofer will perform the full evaluation of the functionalities and performance of the two module works with respect to the expected design specifications.

COSMOTEC serves as the technical coordinator and brings its expertise towards the development and validation of a high-density 5G solution, while ensuring the interoperability of the 5G-PHOS solution. COSMOTEC will also utilize its existing communication channels to promote the 5G-PHOS innovation to the research and industry communities.

IQQuadri serves as innovation co-management of the project and will provide wireless expertise in the design of the optical-wireless converged architecture for 5G networks. IQQuadri will also design, simulate and implement Radio-Optical beamforming techniques and beamforming training for 5G networks.

Figure 2. 5G-PHOS’ website: the About page

Figure 3. 5G-PHOS’ website: the Consortium page
Figure 4. 5G-PHOS’ website: the Factsheet page
Figure 5. 5G-PHOS’ website: the Press Releases page
Figure 6. 5G-PHOS’ website: the Project Overview page
Figure 7. 5G-PHOS’ website: the News and Events page
Figure 8. 5G-PHOS’ website: the Private area main page
Figure 9. 5G-PHOS’ website: the Private area administration page
Figure 10. 5G-PHOS’ website: the Private area deliverables page
Prof. N. Pleros & Dr. G. Kalfas

- Balkan Center, Building A, 1st km Thessaloniki-Thermi, 57100 Greece
- gkalfas@csd.auth.gr
- npleros@csd.auth.gr
- +33 2210 990388

Download Information as: Card

Send an Email. All fields with an asterisk (*) are required.

Name *

Email *

Subject *

Message *

Send a copy to yourself

Send Email

Figure 11. 5G-PHOS’ website: the Contact Us page
3. Social Media Accounts

5G-PHOS has established accounts at various social networking services, such as Twitter, LinkedIn, Facebook, as additional dissemination tools. Quadrat has created and will manage the following social media accounts:

1. **Twitter:** 5G-PHOS’ account is https://twitter.com/5GPHOS_social. The project follows 38 other account, while it has 26 Followers, including many EU projects:

![5G-PHOS Twitter Account](image)

Figure 12. 5G-PHOS twitter account
Figure 13. 5G-PHOS following many H2020 projects
Figure 14. 5G-PHOS followers
2. LinkedIn: the LinkedIn account of 5G-PHOS is located at https://www.linkedin.com/in/5g-phos/. This account has already 37 connections and 42 followers:

![5G-PHOS LinkedIn profile](image_url)

Figure 15. 5G-PHOS LinkedIn profile
Figure 16. Kickoff dissemination through 5G-PHOS LinkedIn page

Figure 17. 5G-PHOS involvement in LinkedIn groups
3. Facebook: The Facebook account of the 5G-PHOS project is
https://www.facebook.com/5gppp.5gphos/

Figure 18. The 5G-PHOS Facebook account